You Can Grow Your Brain New Research Shows the Brain Can Be Developed Like a Muscle

Many people think of the brain as a mystery. We don't often think about what intelligence is or how it works. And when you do think about what intelligence is, you might think that a person is born either smart, average, or dumb-either a "math person" or not—and stays that way for life.

But new research shows that the brain is more like a muscle-it changes and gets stronger when you use it. Scientists have been able to show just how the brain grows and gets stronger when you learn.

Everyone knows that when you lift weights, your muscles get bigger and you get stronger. A person who can't lift 20 pounds when they start exercising can get strong enough to lift
 100 pounds after working out for a long time. That's because muscles become larger and stronger with exercise. And when you stop exercising, the muscles shrink and you get weaker. That's why people say "Use it or lose it!"

But most people don't know that when they practice and learn new things, parts of their brain change and get larger, a lot like the muscles do. This is true even for adults. So it's not true that some people are stuck being "not smart" or "not math people." You can improve your abilities a lot, as long as you practice and use good strategies.

A Section of the Cerebrum

Inside the outside layer of the brain-called the cortex-are billions of tiny nerve cells, called neurons. The nerve cells have branches connecting them to other cells in a complicated network. Communication between these brain cells is what allows us to think and solve problems.

When you learn new things, these tiny connections in the brain actually multiply and get stronger. The more you challenge your mind to learn, the more your brain cells grow.

Then, things that you once found very hard or even impossible to do-like speaking a foreign language or doing algebrabecome easier. The result is a stronger, smarter brain.
A Typical Nerve cell

How Do We Know That The Brain Can Grow Stronger?

Scientists started thinking the human brain could develop and change when they studied adult animals' brains. They found that animals who lived in a challenging environment, with other animals and toys to play with, were different from animals who lived alone in bare cages.

While the animals who lived alone just ate and slept all the time, the ones who lived with different toys and other animals were always active. They spent a lot of time figuring out how to use the toys and how to get along with other animals.

These animals had more connections between the nerve cells in their brains. The connections were bigger and stronger, too. In fact, their whole brains were about 10% heavier than the brains of the animals who lived alone without toys.

The adult animals who were exercising their brains by playing with toys and each other were also "smarter" -they were better at solving problems and learning new things.

Can Adults Grow Their Brains?

Scientists have recently shown that adults can grow the parts of their brains that control their abilities-like the ability to do math or even to juggle.

In one study, scientists found a group of adults who were not jugglers. They taught half how to practice juggling in the right way. These people practiced
for a long time and got much better at juggling. The other half didn't practice, and didn't get better.

Next, the scientists used a brain scanner to compare the brains of the two groups of people. They found that the people who learned how to juggle actually grew the parts of their brains that control juggling skills-the visual and motor areas. Their brains had changed, so they actually had more ability.

This was surprising because these people said before the study that they couldn't juggle-just like some people say they're "not good at math." But when they learned good strategies for practicing and kept trying, they actually learned and grew their brains.

In Yellow: Parts of the brain that grew when adults learned to juggle
This can happen because learning causes permanent changes in the brain. The
doi:10.1371/journal.pone.0002669.g001 jugglers' brain cells get larger and grow new connections between them. These new, stronger connections make the juggler's brain stronger and smarter, just like a weightlifter's toned muscles.

A Formula For Growing Your "Math Brain": Effort + Good Strategies + Help From Others

Scientists have also found that learning to juggle is a lot like getting better at math. When people learn and practice new ways of doing algebra or statistics, it can grow their brains-even if they haven't done well in math in the past.

Strengthening the "math" part of your brains usually happens when you try hard on challenging math problems. But it's not just about effort. You also need to learn skills that let you use your brain in a smarter way.

If you use a bad strategy, you may not learn-even if you try hard. A few people study for math by doing the same set of easy problems and skipping the hard ones, or just re-reading the textbook, because it feels easier. Yet when it comes time to do the test, they don't do well because they didn't work on problems that stretched their brains and taught them new things. When this happens, they may even say "I'm just not smart at math."

But the truth is that everyone can become smarter at math if they practice in the right way. If a weight lifter watched other people exercise all day long, he wouldn't get any stronger. And if someone tried to learn how to juggle by just reading a book about juggling, they wouldn't learn. You actually have to practice the right way-and usually that means the hard way-to get better at something. In fact, scientists have found that the brain grows more when you learn something new, and less when you practice things you already know.

This means that it's not just how much time and effort you put in to studying math, but whether, when you study, you learn something new and hard. To do that, you usually need to use the right strategies. People often learn those good strategies from others, like teachers or students who do well. Luckily, strategies are easy to learn if you get help.

The Truth About "Smart" and "Dumb"

People aren't "smart" or "dumb" at math. At first, no one can read or solve equations. But with practice, they can learn to do it. And the more a person learns, the easier it gets to learn new things-because their brain "muscles" have gotten stronger.

This is true even for adults who have struggled for a long time to learn something. Dr. Wittenberg, a scientist from Wake Forest University, said "We used to think adults can't form new brain connections, but now we know that isn't true... The adult brain is like a muscle, and we need to exercise it."

People who don't know this can miss out on the chance to grow a stronger brain. They may think they can't do it, or that it's too hard. It does take work to learn, just like becoming stronger physically or becoming a better juggler does. Sometimes it even hurts! But when you feel yourself get better and stronger, you realize that all the work is worth it!

References:

A similar version of this article was written by Lisa Blackwell and can be downloaded from: www.brainology.us/websitemedia/youcangrowyourintelligence.pdf

Blackwell, L. A., Trzesniewski, K. H., \& Dweck, C. S. (2007). Theories of intelligence and achievement across the junior high school transition: A longitudinal study and an intervention. Child Development, 78, 246-263.

Driemeyer, J., Boyke, J., Gaser, C., Buchel, C., May, A. (2008). Changes in Gray Matter Induced by Learning—Revisited. PLoS One, 3, e2669. doi:10.1371/journal.pone. 0002669 .

Nordqvist, C. (2004, Feb 1). "Juggling makes your brain bigger - New Study." Retrieved from http://www.medicalnewstoday.com/releases/5615.php

How can I support my child with learning math?
 Parent Guide: Grades 6-8 Math

Goal: You will learn strategies to support your child with learning math.
Three main take homes:
I) Find out what your child is learning in class.
II) Understand what your child knows and use questioning to help clarify and deepen your child's thinking.
III) Provide your child with additional math experiences.

I. Find out what your child is learning in class.

Washington State has established performance expectations (standards) for students K-12, which describe what the students should know and be able to do. A brief summary is shown in ATTACHMENT A and a more detailed summary is included in ATTACHMENT B. A complete set can be found at www.k12.wa.us/CurriculumInstruct/Mathematics/default.aspx.

- Look at her daily planner for homework.
- Look at her math journal and textbook for specific content.

Math 6-8 Resources

- Download the parent letter (ATTACHMENT C) for the unit that your child is working on which will include important concepts and examples to help you support her learning. (Spanish parent guides are available as well)

Go to http://www.phschool.com/cmp2/parent_guide/

- View the video tutors which are short interactive tutorials for each lesson.

Go to: http://www.phschool.com/atschool/cmp2/program page.html
Select grade level, then select "video tutors"

- View additional on-line materials, like Homework Help, Skills Practice, Active Math Online, and more.

Go to: http://www.phschool.com/atschool/cmp2/program page.html Select grade level, then select item

Algebra 1 Resources

- Access on-line textbook. The online text has interactive features which enable students to link from pages in the book to practice problems, dynamic explorations, and calculator notes

Go to http://math.kendallhunt.com/
Enter your "class pass" (in upper right hand side of screen)

- Download a Guide for Parents (in English and Spanish) (ATTACHMENT C) for the unit that your child is working on which will include: A brief summary of each chapter, includes tips for working with students, chapter summary exercises and review exercises with complete solutions.

Go to: http://math.kendallhunt.com/x4540.html

- View additional on-line resources which include:

Condensed Lessons (in English and Spanish)—A detailed explanation of each lesson. These can provide extra help for students who have fallen behind or missed class, as well as support for adults who want to understand the details of the mathematics.

More Practice Your Skills-a set of additional exercises for each lesson in the book for students who want extra practice.

Calculator Notes, Programs and Data-helpful information, programs and tips for using calculators for specific activities.

Dynamic Explorations-Structured investigations available online so students and their families can explore mathematics concepts at home

Go to: http://math.kendallhunt.com/x4540.html

II. Understand what your child knows and use questioning to help clarify and deepen your

 child's thinking.See Attachment D: Questioning Strategies to learn a process that will help you facilitate a conversation to help her access, solve, and extend her understanding.
o Scenario 1: She doesn't have a strategy to solve the problem yet.
o Scenario 2: She has a strategy that she is going to try.
o Scenario 3: She solves a problem correctly (or incorrectly).

For additional resources, see Attachment E: Helping your Child with Homework.

III) Provide your child with additional math experiences.

Playing games with your child is an important way for your child to learn math.

1) For card games, see Attachment F: Games
2) For on-line games, see Attachment G: Getting Started Using Everyday Math on-line.

The EDM program is used for K-5 students; however, if your child needs extra practice then they can access this site:

login: student919 password: 354

3) Some board games that involve mathematical thinking include:
(Note: Math and Stuff has a great selection of games. Mention Pathfinder and our school gets credit)

Sudoku 5x5 (Ages 8 to adult, single player)
This number-based logic game - popularized in Japan, where it's name translates as "one number" - has become a hit for its addictive problem-solving allure and simple elegance. Now it's time for kids to take up the challenge! Sudoku 5×5 packs the educational opportunities of the game into the perfect package for fun and learning alike: magnetized number pieces, a magnetic playing surface, and 48 different challenge cards on which to play, ranging from "Beginner" to "Expert" levels. Kids will love the brain-tingling challenge of making each row, column, and colored section contain the numbers 1 through 5 . And all while they practice coordination and sequencing!
Math Dice (Ages 8 to adult, 2 or more players)
In this simple game of mental math, players set their minds racing to creatively calculate a target number. The product of two "target dice" makes the "target number." Then, after rolling three "scoring dice," players must add, divide, square, and subtract to come closest to the target number in the end. When billed as a game, kids may balk at taking up the challenge, but when played as a fun break from practice sheets and textbooks, Math Dice does the trick.
Ka-Ching! (Ages 10 to adult, 2 players)
Kids may not recognize the real world value of math skills, but in this buy low, sell high stock market game, multiplication is key. "Stock" cards of different values and colors are arranged in overlapping columns, and players can choose to either invest by buying a top card, or cash in by selling back two of the same color. Because a pair of cards yields the product of their values, kids must practice strategy and mental multiplication to figure out when to dump their stocks, and when to buy. Although the gameplay lacks some pizazz, Ka-Ching! is a great way to help the math medicine go down, especially if used as a fun alternative to multiplication tables and practice sets.
Chess
A board game of strategic skill for two players.

ATTACHMENTS

Attachment A: Brief Summary of standards
Attachment B: Summary table of standards
Attachment C: Parent Letter
Attachment D: Questioning Strategies
Attachment E: Helping your Child with Homework
Attachment F: Games
Attachment G: Getting Started Using Everyday Math on-line

Questioning Practice

Scenario 1: She doesn't know what to do yet. (Resource: use parent letter)
Example: (Grade 8: Growing, Growing, Growing: Exponential Relationships)

1. Suppose a reward is offered. At the start, $\$ 10$ is put in a fund. On the first day, $\$ 20$ is added; on the second day, $\$ 40$ is added; and on each succeeding day, the reward is doubled. How much money is added on the tenth day?

Parent	
What do you know?	
What are you trying to find out?	"I'm not sure"
How can you solve it?	Student makes a drawing of situation, but still doesn't know.
Ask "question to learn" questions.	
Let's look at the parent letter.	
Questions:	

Scenario 2: She doesn't know what to do yet. (Resource: Use on-line Homework Help)

Example (Grade 6: Covering and Surrounding: Investigation 5, ACE Exercise 36)
2. The Nevins want to install a circular pool with a 15 -foot diameter in their rectangular patio. The patio will be surrounded by new fencing and the patio area surrounding the pool will be covered with new tiles.
a. How many feet od fencing are needed to enclose the patio?
b. How much plastic is needed to cover the pool if there is a 1 -foot overhang?
c. How many feet of plastic tubing are needed to fit around the edge of the pool?
d. How many square feet of the patio will be covered with tiles?

Parent	Child
What do you know?	
What are you trying to find out?	

How can you solve it?	"I'm not sure"
Ask "question to learn" questions.	
Let's use the on-line Homework Help.	
Read the "Hint" questions: - When you find the length of fence around the patio are you finding perimeter or area? - What is the radius of the cover of the pool with the 1-ft overlap? - When you find the amount of plastic that will cover the pool are you finding circumference or area? - What is the radius of the pool? - When you find the amount of plastic tubing that will fit around the pool are you finding circumference or area?	

Scenario 3: She solves a problem correctly (or incorrectly) and you want to clarify and deepen her thinking.
Use example 2 above.

Parent	Child
Possible Questions:	

$6^{\text {th }}$ grade math
 Unit: Covering and Surrounding: Two-Dimensional Measurement

- Review Parent Letter

- Scenario 1: She doesn't know what to do yet. (Resource: use parent letter)

1. Determine the area and perimeter of the following:

Parent	Child (doesn't know what to do yet)
What do you know?	
What are you trying to find out?	"I'm not sure"
How can you solve it?	Student makes a drawing of situation, but still doesn't know.
Ask "question to learn" questions.	
Let's look at the parent letter.	
Possible questions:	

Scenario 2: She doesn't know what to do yet. (Resource: Use on-line Homework Help) Example (Grade 6: Covering and Surrounding: Investigation 3, ACE Exercise 25)
2. Karl and Rita are building a playhouse for their daughter. The floor of the playhouse will be a rectangle that is 6 feet by $8-1 / 2$ feet.
a. How much carpeting do Karl and Rita need to cover the floor?
b. How much molding do they need around the edges of the floor?
c. The walls will be 6 feet high. A pint of paint covers about 50 square feet. How much paint do they need to paint the inside walls? Explain.
d. Make your own plan for a playhouse. Figure out how much carpeting, wood, paint, and molding you would need to build the playhouse.

Parent	Child (doesn't know what to do yet)
What do you know?	
What are you trying to find out?	"I'm not sure"
How can you solve it?	Student makes a drawing of situation, but still doesn't know.
Ask "question to learn" questions.	
Let's use on-line homework help. Read the "Hint" questions: 1. Sketch a rectangle to represent the floor and label its length and width. 2. Is the amount of carpeting represented by perimeter or area? 3. Is the amount of molding of the floor represented by perimeter or area? 4. Sketch a rectangle that could represent a wall of the playhouse and label its length and width. 5. Should you find the perimeter or the area when figuring the amount of wall to be painted?	

Scenario 3: She solves a problem correctly (or incorrectly) and you want to clarify and deepen her thinking.
Use example 2 above.

Parent	Child
Possible Questions:	

Math Standards: 6-8

ATTACHMENT A

By the end of $\mathbf{6}^{\text {th }}$ Grade

A central theme in Grade 6 is proportional reasoning. Students begin to develop multiplicative and proportional reasoning. Ratios, rates, and percents, as well as study of two- and three-dimensional figures, support understanding of proportions. Students are introduced to variables, one-step equations, and graphing of simple functions.

Number Sense: Multiply and divide fractions and decimals with understanding. Use approximations of fractions and decimals to estimate computations and verify that answers make sense. Extend knowledge of fractions to develop an understanding of what a ratio is and how it relates to a rate and a percent. Extend mental math skills with all operations-addition, subtraction, multiplication, and division-with whole numbers, fractions, and decimals. Expand understanding of our number system through introduction to negative numbers for describing positions or quantities below zero. Geometry: Extend understanding of area and perimeter to more complex twodimensional figures, including circles. Find the surface area and volume of simple threedimensional figures.
Algebra: Develop understanding of how letters are used to represent numbers in mathematics. Use tables, words, numbers, graphs, and equations to describe simple linear relationships. Write and evaluate expressions and write and solve equations.
Processes: Move more fully into the symbolic world of algebra and higher-level mathematics. Move easily among representations-numbers, words, pictures, or symbols-to understand and communicate mathematical ideas, to make generalizations, draw logical conclusions, and verify the reasonableness of solutions to problems.

By the end of $7^{\text {th }}$ Grade

A central theme in Grade 7 is application of proportions. Students learn about proportions (i.e., a proportion is the equating of two ratios) and apply that knowledge. Procedures for computing surface area and volume and study of probability provide opportunities to use proportions. Negative numbers are introduced to extend number sense to all rational numbers; this is critical for algebraic reasoning. Students solve twostep equations and learn different ways to display data.

Number Sense: Add, subtract, multiply, and divide rational numbers-fractions, decimals, and integers-including both positive and negative numbers. Extend work with ratios to solve problems involving a variety of proportional relationships, such as making conversions between measurement units or finding the percent increase or decrease of an amount. Use exponents to write numbers in terms of their most basic (prime) factors.
Geometry: Solve problems involving the proportional relationships found in similar figures. Extend understanding of surface area and volume to include finding surface area and volume of cylinders and volume of cones and pyramids. Apply formulas and solve a range of problems involving three-dimensional objects. Extend coordinate graphing skills to plotting points with both positive and negative coordinates on the coordinate plane.

Math Standards: 6-8

Algebra:_Graph proportional relationships and identify the rate of change as the slope of the related line.
Data: Apply understanding of rational numbers and proportionality to concepts of probability. Understand how probability is determined and make related predictions. Revisit how to interpret data, using more sophisticated types of data graphs and thinking about the meaning of certain statistical measures.
Processes: Move more fully into the symbolic world of algebra and higher-level mathematics. Move easily among representations-numbers, words, pictures, or symbols-to understand and communicate mathematical ideas, to make generalizations, draw logical conclusions, and verify the reasonableness of solutions to problems.

By the end of $\mathbf{8}^{\text {th }}$ Grade

A central theme in Grade 8 is algebraic thinking. Students consolidate their understanding of multiplicative and proportional reasoning and apply these ideas to fundamental concepts of algebra. Study of linear functions helps students generalize their understanding of proportions to situations involving linear relationships that are not proportional.

Another theme is statistics. Techniques for summarizing and analyzing data are further developed and comparison of two data sets with unequal numbers of data elements provides a sophisticated application of proportions. Study of linear functions helps students generalize their understanding of proportions to situations involving linear relationships that are not proportional. (source OSPI document)

There is also a greater emphasis on verifying and justifying solutions. Finding and knowing a solution is not enough. 8th graders must communicate clearly and use mathematical vocabulary and symbols appropriately to convince as well as refine their thinking to see when their reasoning is logical and appropriate to the task.

Number Sense: Use scientific notation to represent very large and very small numbers, especially as these numbers are used in technological fields and in everyday tools like calculators or personal computers.
Use exponents in expressions containing both numbers and variables. Introduction to simple irrational numbers.
Algebra: Solve a variety of linear equations and inequalities. Build on understanding of proportional relationships and simple linear equations to work with a broader set of linear relationships; learn what functions are. Model applied problems with mathematical functions represented by graphs and other algebraic techniques.
Geometry: Work with lines and angle in solving problems using triangles. Use known relationships involving sides and angles of triangles to find unknown measures. Work with squares and square roots, especially in problems with two- and three-dimensional figures. Use basic geometric theorems such as the Pythagorean Theorem.
Data: Analyze statistical studies or short statistical statements from newspapers, television, or the Internet. Use mean, median, and mode to summarize and describe information, even when these measures may not be whole numbers. Use knowledge of linear functions to analyze trends in displays of data. Create displays for two sets of data

Math Standards: 6-8

in order to compare the two sets and draw conclusions. Expand understanding of probability to more complex situations.
Processes: Move more fully into the symbolic world of algebra and higher-level mathematics. Move easily among representations-numbers, words, pictures, or symbols-to understand and communicate mathematical ideas, to make generalizations, draw logical conclusions, and verify the reasonableness of solutions to problems.

By the end of Algebra 1

Numbers, Expressions, and Operations: Extend understanding of the number system to real numbers represented by the number line. Work with integer exponents, scientific notation, and radicals, and use variables and expressions to solve problems. Write and manipulate a wide variety of algebraic expressions. Characteristics and Behavior of Functions: Formalize and deepen understanding of functions, their characteristics, and their use. Recognize functions of the form $y=f(x)$, where any allowable x-value yields a unique y-value. Learn and use representations and basic transformations of functions.
Linear Functions, Equations, and Inequalities: Use linear functions to model situations involving a constant rate of change. Solve sets of linear equations and inequalities in two variables, interpreting the intersection of the lines as the solution. Use graphical and numerical methods to approximate solutions to equations. Use linear functions to analyze relationships, represent and model problems, and answer questions.
Quadratic Functions and Equations: Graph quadratic functions, and solve quadratic equations with real roots. Use quadratic functions to represent and model problems and answer questions in situations that are modeled by these functions. Solve quadratic equations by factoring.
Data: Select and use mathematical models to represent, describe, and compare data sets. Determine the relationship between two variables; make and defend appropriate predictions, conjectures, and generalizations. Understand limitations of conclusions based on results of a study or experiment; recognize common misrepresentations. Additional Content: Develop a basic understanding of arithmetic and geometric sequences and of exponential functions, including their graphs and other representations. Processes: Use algebra and the properties of number systems to develop valid mathematical arguments, make and prove conjectures, and find counterexamples to refute false statements, using correct mathematical language, terms, and symbols. Formalize a coherent problem-solving process: analyze the situation to determine the question(s) to be answered, synthesize given information, and identify implicit and explicit assumptions. Examine solution(s) to determine reasonableness, accuracy, and meaning in the context of the original problem.

5 ${ }^{[13}$ GIADE RAATH TTAHDAFDS

Liet af Performance Expectations	Core Content a1: Multialication and Dvision of Fractiens and Decimals
E	Congare 1 " 0

Core Content 12: Mathematical Exaressions and Equations	Core Content W3: Ratios, Rates and Percents	Core Cortent a4: Two- and Three-Dimens onal Figures
Wravil riketrimen 	 Namer im	5rantre fin =rit niomer

Core Content H 5 : Additional Key Content
 - crione a witrerila

Core Processer 16 ieasoning, Problem Solving, ind Communication

 la memed

Represent multiplicat on and divisian of non-negative fractirnv and derimalh wing area nodels and the number line, ald connect eacl: represertation to theretated equstion.

Fluenty and accuratey multiply and divide nonnegative decimals.

0

 reflow hreat as ack hr

 tar ere

Snlue ingle- and muibi-aten wort problems imolving operations with fractons and decimals and verify the solutions.

Drow a first-quadant graph in the coorrinate plane to rpiresent informutinn in a table or givensitiation.

Write ratios th rupresenta variety of rates. 0

Determine the perimete and ares of a tomposite firuie that can he diwirbed inten triarteles. rectangle, and parts of urdes.

GM
 aore proven five =ralto

 coll on 붑V․ Recogrize and draw twodimensional representatons of three-dimensional figures. properties, and wie the order ofoperations to svaluate mathematital expressions.

Llecers mop rouk 3ed med 도N

Solve word problems using mathematital expressions and equationa and veify zolutiona.

Beprescr: perberal viu p

Solve single- and multi-step word problens inwalvine ratios, rates, and percents, and verify the salations.

U
 truntermorex Anterercecsity

 Lepramechof

Determine the experimenta probability of a simple event uaing data colected in an experiment.
A
so

Corgare rat ariter mint at arc icyotec monvil all rif the rindelo

 ry

 B ulvilu pron

Bepresent a problem

 situation, describe the process ssed to solve the problem, and verify the reasonableness of the solution
Gprumylefter thy angand 4

 strill afprephe

 bren incrowners lingups

Apply a previoualy used problem-solvingstrategy in a rew context.

 uraime brtime mitr 루ำำ.

Makn and test ennjecturne

 tased on data ler informationl collected from epplorations ind oxpermenti.| Ust of Performanta Expectations | Core Content 11.
 leatiand Kumbara and lineat
 Eexation | Core Content 12：
 Bragortisnality and Similatity | Core Contentw3：
 Surlach dazand Volume | Core Content its fremablity und outa | Core Content $45:$ Addikisnal Kex Cortumt | Core Processes A6：
 Bewoning ProbbemSahing，and
 Communication |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＊ |

 |
 ＂ |

 | 펴내…
 － | ＂
 ina raciont |
 분․․ |
| E | Represent addtion subtraction muitipricat on and divaion of positive and nesative integers visualy and namericaly． | Solve siggle and multh－step problemi imolvies praportian al reivionstips and verify the selurians． | Determine the volame of pyamds end canes virite farmular． | Determine the theoretial probilaity of a perticdar anemt ans ine theoretical protabity to prodict axparimamtal outcomas． | Write the prime factoritation of shole mamben arsetar than 1 ， ining exponerts when ерргаргiate． | Identify reievant，missine and extranewus ifformation relateil to the solvivin to a problem． |
| E |
 ficrora |

 |

 － |

 | | Entre ylogme

 －minl Mrgiole Her miner |
| D | Define and draimine the dongutie vslue of a number． | Mahe icale drawine and sules oroblems relsted to scale．
 ILMA | Sole suble ind mult－ilep wund probiems ancoving surface area or volame and verity the solutions．
 6．M | Somituct and interprat histograme，stem and－ieal plot． and cirve grachs． | | Bapreient a prablem situation， decribe the process used to solve the problelem，and venty the reatenatileness of the salation． |
| \ldots | |

 | | บーロ自行＂
 | |

 Nㅜㄴ
 느느응 |
| F | Write in equation that tarrisponds te a gheen preibium stuation and describe a problem shtuatios that corresparide to a given equaton． | Determine the slope of sline eorrmpunding to the graph of a oroportional relatiovehipans flate sinpe tes similar tratyous | | | | Apply a previoustr sued probiem－ sulvere ithethery in a now turbext． |
| E | Fintor viverntul
 |

 m－anlitl | | | |

 －r＂rramen |
| H | | Determine whether or not a nelationibip is praportioniel and exp tan your reasoning． | | | | Make and test coojectures based an diva（or inlormatian）exilectad from explocatione and esperiments． |
| － | | м

 0 | | | | |

S ${ }^{\text {™ }}$ GRADE PAATH STAMDNRDS					
List of Performance Expectations	Core Content N ： Linear Functions and Equations	Ccre Content \＃2． Pmperties of Geometric Figures	Core Content A3： Summaryand Analysis of Data Sets	Core Content \＃4： Additional Keycontent	Core Processes A5： Beasoninge Problem Schving，and Communication
a		 noscrectorntre，answhen 	4 ＋0゙察．	 －10 \％14Evilatera of wo 	 5 nowec
B	Solve one－and two－step linear inequalities and graph the solutions on the rumber line．	Determine missing angle measures using the relationships among the argles formed by paraliel lines and trinsversah．	Select，construct，and analjze data displays，including hax－and－whisher plots，to compare two sets of data．	Solve problems involving operations wath numbers in scientific notation and verify solutions．	Identify relevant，missing，and entraneous information melated to the solution to a problem．
c	 	 mpur	Craweammer protor alace ＂prombl vetr mbedrav 	In liver urroral fapen on ＂Murats＂rilumant aperal on．	
D	Determine the slope and y－intercept of a inear function described by a symbolic eapression，table，or eraph．	Fipresent and explain the effect of are ar more trandations，rotations， rellections，or dilstions（centered at （tre orisin）of a geometric fielare on the courdinate plane．	Describe different methods of selecting statistical amples and analyze the strengths and wesknesses of each method．	Identify rational and irarional numbers．	Hepresent a problem situation． describe the process used to solve the probiem，and verify the feasonableness of the solution．
\＃	 	9ns 	 recil 日rifurro		
F	Solve single－and multi－step word problems invalaing linear functions and verify the solutions．	Demonstrate the Pythatorean Theorem and its converse and apply them to solve problems．	Determine probabilities for mutually enclusive，dependent，and independent events for muall sample spaces：		Apply a previously used problem－ solving strategy in a new contert．
15	 Hupr，아 frite 	 lac perM ovte toorlineopire	bolcterir meralatip MA 定特 Mblom		
H					Make and test conjectures based on data（or information）colected from esplinratiant and pupwiments

ATTACHMENT B

ALEERA 1 YATHEMATGESTANDARDE

					Ponverith me Euster	Cryant		
2	Select and jusiffy finctions and equaJons to mosel and solve problams.	Kuww the reationship bewayn ravi numbes and tee number ing and corpare and order val numbers with and whout he number ive.	Debermine whether a ralationstho is a finction and lisantfy fe domain, rang9, roots, and independert and dependerl varishles.	Wrie and solve ireat equabians ans infqual tas inom veriabla,	Represert a quadraf: Sundien wif earmbils expession a graph. $\frac{1}{}$ a tabe, and with a destipfon make cornections amorg representations.	Use and eraluate the accu racy of furmary statistica to describe and campare data sels.	Shetch exponertal funcion's graph in for form $y=$ z'therenis an integer, describe eflects that charges in te paramates a and b have ct Fe graph, 8 anseer questiors that arise in sinafors modeled by eypnenfal fundions	Andlyze a poblem sitzation and reprosemith mathematialy.
¢	Solve proslams What can be rayesented br Inear functors, equafons, and inequalifes.		Representia danction with a sumbdic axpressisn, is a graph, in a tatie, and using words, and make connectiors among these rapesentabions,	Wrie and graph an equation for a lie aiven the sloot and the winiseept, the slope and a point on te ine, or two points on fee line, and translate between forms of inear equators.	Skeich the gragh of a guadratcicunction, da. serte the effects that charges in fhe paramelers have on the graph, intrpreixinilectepts as scluibnit to quadratc equation	Make valdinflarences and draw cenclusions based on data.	Find and approxmale solutbons is exponential exuations.	Selactand aply strategies to sabe problems.
E	Solve prodems that can be rexesented by a sysiem sf two linear equabionsor inequalitis.	Interpel and use ineper evonents, squareiube rots, apply fe liwn and properties of expocentis to implify and evelate owenontial orprociona	Evaluate ful むa a [ie., fla) and silue for x in the equain $(x)=b$.	Iderity and inferpret the slope ant infercepts of a linear fun:tion, induding equafors for parslel and perpendcular Ines.	Solve quadratic equaions thalcan be factored as (ar + b) $(c r+d$) where a. b, c and dare inhages.	Describe tow linear tansformationsalfect the certer and spread of urivariate dela.	Express anihtmdic and geometric sequenoes in bch explict and recursive forms, translate between the two toms, ceplain how rate of change la regrasamid in agch fom, ond vos tho fome to find epoofis terms in the sequence.	Eval uale a tolufion for reasonableress, verizy its ascuracy, and inlerpret the solution in the coniext of the orignal problam.
0	Solve proalems that can be rexreenten by quasraticfunctions and equaions. (see alsu $A Z .1$ C)	Determine whether aporonimatons or fasat vaues of rael numbers ar apsepriate, defendbis an Fer curimal, and justity the selecfon.		Wries and solve systems of two Iheer equations and inequalites in two veriaties.	Solve quadratic equaions thathare real meots ty conplating the sgure and by using to Gusciali: fummale.	Find the equstion of a Inear funcion that best fis bimaniata dita thet are Inearly reluted, interperet Uie dupy and r-hterchpt it the line, ard use the equation to male predicfions.	Solve an equafin irwobing sevenal variaties by exprasing one variazla in terms of the othars.	Geveraize 1 solution stralegy fora singla problem to a class of relaled pectiams, and apply a mishyy ma uctas uf relaled prockerns to salve specfic projems.
F	Solve proslams that can be rexesented by exponenfal functions and equaions.	Us: algaberic propertios to lactor and combine fike ferms in poynomials.		Dascrbe how changas in fe paramaters of inearfunctions \& funtions corlaining en absolute value of a inear expession affert her graphe \& the reliflonchiges they referseart. A		Describe the comelation of data in scatersbts in terms of story or weak and positive or negative.		Rearl and htervet degrams, gapha, and text containing he s,mbols, language, and conventions of mehtemax
\ldots		Add, s.btract, mutply. and dvide polvnomals.						Summaribe mathematical ideas with vecision and efficiency for a given sudience and purpose.
4								Sythesize information to draw conclsions, and eveluate the amumerts and soanduione of of-are
H								Use inductive reasoring atoul aigeta and propes: fes of numbers to make coriecturgs use deductive ressening t prowe or dsprure culiculares.

Dear Family,

The next unit in your child's mathematics class this year is Covering and
Surrounding: Two-Dimensional Measurement. The focus is area (covering) and perimeter (surrounding). The unit helps students develop an understanding of perimeters and areas of rectangles, triangles, parallelograms, and circles. Students use estimating and counting to find areas and perimeters of irregular figures.

UNIT GOALS

The overarching goal of this unit is to help students understand what it means to measure. Students study two kinds of measurements: perimeter and area. Since students often do not know how each of these measures affects the other, students study them together to probe the relationships.
Students develop strategies for measuring perimeter and area. Their strategies are discussed and used to formulate rules for finding area and perimeter of different figures. Many ideas from previous units will be revisited and extended in this unit. For example, from the Prime Time unit, the connection between factors and dimensions of rectangles will be used.

HELPING WITH HOMEWORK

You can help with homework and encourage sound mathematical habits as your child studies this unit by asking questions such as:

- How do you know which measurements of a figure are involved-area or perimeter?
- How can you find the area and perimeter of an irregular shape?
- How can you find the area and perimeter of a regular shape?
- Is an exact answer required?
- Is there a relationship between area and perimeter that will help solve the problem?
In your child's notebook, you can find worked-out examples from problems done in class, notes on the mathematics of the unit, and descriptions of the vocabulary words.

HAVING CONVERSATIONS ABOUT THE MATHEMMATICS IN COVERING AND SURROUNDING

You can help your child with his or her work for this unit in several ways:

- Encourage him or her to use the measuring tools you have at home, such as measuring tapes and rulers, to practice making measurements.
- Help your child develop personal referents for estimating lengths and distances. For example, the distance from home to school might be one mile, or the span of your child's hand might be six inches. Use these referents to estimate other distances and lengths.
- Help your child develop personal referents for estimating area. Use the area of his or her bedroom to estimate areas of other rooms.
- Look over your child's homework and make sure all questions are answered and that explanations are clear.
A few important mathematical ideas that your child will learn in Covering and Surrounding are given on the back. As always, if you have any questions or concerns about this unit or your child's progress in class, please feel free to call.

Sincerely,

Important Concepts

The Measurement Process

- Identify an object and the attribute to be measured.
- Select an appropriate unit.
- Repeatedly "match" the unit to the attribute of the object (or phenomenon, such as time).
- Determine the number of units.

Examples

Measuring Perimeter

Measuring perimeter requires counting how many linear units are needed to surround an object.

Measuring Area

Measuring area requires counting how many square units are needed to cover an object.

There are 5 squares in the first row and 7 rows in all. The area of the rectangle is $5 \times 7=35$ square units or, in general, $\ell \times w$.

W

Perimeter of Rectangles

Students count the number of linear units surrounding the rectangle. To count more efficiently, they can take the measure of the length plus the width and double that amount. They can also calculate two lengths plus two widths to get the perimeter of a rectangle.

Area of Triangles

Students use their knowledge of rectangles to find the area of triangles. If we surround a triangle with a rectangle, we can see that the area of the triangle is half of the area of the rectangle. The triangle may be turned to a convenient side as the base, if needed.

Perimeter of Triangles

Students find the perimeter of a triangle by measuring the lengths of the three sides and adding them together.

Sections 1 and 2 are congruent. 3 and 4 are congruent. The area of the triangle is $\frac{1}{2} b \times h$ where b is the base of the triangle (length of the rectangle) and h is the height of the triangle (width of the rectangle).
The perimeter of the figure above is $2(7+5)$ or $2 \times 7+2 \times 5$ or, in general, $2(\ell+w)$ or $2 \ell+2 w$.

Area of Parallelograms

Students draw a diagonal creating two congruent triangles. The parallelogram and triangle have the same length of the base and height. Students find the area of the parallelogram by multiplying the base and height, without dividing by two, as they did when finding the area of a triangle.

Perimeter of Parallelograms

The perimeter of parallelograms is found by measuring the lengths of the four sides and adding them together.

The perimeter of the triangle is $7+10+12.2$, or 19.2 ft .

Area of Circles

Students find the number of "radius squares," whose side lengths are equal to the radius, that cover the circle. They find they need a little more than three, or pi.

Perimeter of Circles (Circumference)

Students count the number of diameter lengths needed to surround the circle. It is a little more than three, or pi.

The area of a
parallelogram is the area of two triangles
$2 \times\left(\frac{1}{2} b \times h\right)$, or just

$b \times h$.

The perimeter of the parallelogram is $2(5+6)$ or $2 \times 5+2 \times 6=22 \mathrm{~cm}$.

The area of a circle is
pi \times a "radius square" or
pi \times radius \times radius $=$
$\pi \times r \times r=\pi r^{2}$

The circumference of a circle is
pi \times diameter $=\pi d$.

ATTACHMENT D
 Questioning Strategies

I) To help your child think about a problem, use a K-W-H (Know-What-How) strategy.

1) "What do you know?"
2) "What are you trying to find out?"
3) "How can you solve it?" (Make sure you give them time to think and process their ideas)

A) She doesn't know what to do yet.

1) Question to learn:

- "Have you solved similar problems that would help? Let’s look at your notebook."
-"What terms do you understand or not understand?"
- "Can you make a drawing to show what you know?"
- "Can you describe a strategy we could try?"

2) Use other resources (see the "Parent Guide" for detailed information):

- Download the parent letter for the unit that your child is working on which will include important concepts and examples to help you support her learning.
- View on-line Homework Help
- View the Video Tutors which are short interactive tutorials for each lesson

B) She has a strategy that she is going to try. While working on the problem...

- Do you see any patterns or relationships that will help solve this?
- How can you organize the information?
- Can you describe a strategy you can use to solve this?
- Can you make a drawing to explain your thinking?
- What would happen if. . . ?
C) She solves a problem correctly (or incorrectly) and you want to clarify and deepen her thinking.
- "How did you solve it?"
- "Help me understand this part..."
- "How does the math in this problem relate to other problems you have seen?"
- "Can you explain/show why this is true?"
- "How can you convince me your answer makes sense?"
- "Does your answer seem reasonable? Why or why not?"
- "That's great that you can solve it like that, I'm wondering if you can think of a another way to solve it?"
- What if you had started with...rather than...?

Doing More Math
at Home

In helping your child learn, one goal is to assist them in figuring out as much as they can for themselves. Good questions and good listening will help make sense of mathematics, build self-confidence, and encourage mathematical thinking and communication. Here are some questions you can use to guide your child's thinking:

Getting Started

- What do you need to find out?
- What do you need to know?
- What terms do you understand or not understand?
- Have you solved similar problems that would help? Let's look at your notebook.

Working on the Problem

\qquad

- How can you organize the information?
- Do you see any patterns or relationships that will help solve this?
- Can you describe a strategy you can use to solve this?
- Can you make a drawing to explain your thinking?
- What would happen if...?

Reflecting On a Solution

\qquad

- Has the question been answered?
- How do you know your solution is reasonable?
- How can you convince me your answer makes sense?
- What mathematical skills and ideas did you use to solve the problem?
- What did you try that did not work?

Clarifying and Extending Thinking

- Help me understand this part. . .
- Can you explain it in a different way?
- Is there another possibility or strategy that would work?
- How is this connected to other ideas that you have learned?

Find a Study Place If possible, arrange for a quiet area. Have available materials such as graph paper, notebook paper, a ruler with both metric and standard units, a calculator (graphing for 7th-12th grade), and a dictionary.

Develop a System Help your child develop a system for writing down assignments and keeping track of progress. Check to make sure your child does so consistently.

Develop Note Taking Skills Help your child develop a system for taking meaningful notes. Frequently, note taking is taught during class, so it may just be a matter of seeing if your child is properly taking notes.

Organize Your Notebook Many children need assistance in organizing and maintaining a notebook. Routinely check to see if your child is correctly following the program's guidelines for keeping notebooks.

Foster Time Management Skills Encourage and expect your child to get work done on time, to stay caught up, to get help in a timely manner, and to correct errors in work. You may want to help your child go over incorrect or incomplete work and talk about how the work could be improved.

Master the Needed Skills It is generally expected that middle school students know whole number addition, subtraction, multiplication, and division. If your child is not proficient with these basic skills, help them master the needed skills.

Find Study Buddies Encourage your child to identify study buddies or another student they can call to work with on assignments, get clarification, or find out about makeup work.

Two important goals for all students are that they learn to value mathematics and become confident in their ability to do mathematics. Parents can help them develop a "can do" disposition toward math, by nurturing their curiosity and providing support and encouragement.

Point Out Real-World Mathematics Mathematics is everywhere, yet many children don't see it. Point out and reinforce mathematics skills at home. For example:

- Talk about how you use math at work or home.
- Involve your child in tasks that require computing, measuring, estimating, building, problem solving, and reasoning.
- Look for activities that require your child to use their mathematical skills such as building scale models, cooking, planning trips, and playing logic games.

Have Your Child Explain What They Learned Invite your child to explain what was learned in class. It gives them an opportunity to clarify their thinking, to practice new skills, and to communicate mathematically.

Look for Games Using games and activities is an another way of teaching and/or reinforcing mathematics skills and thinking.

Look for Articles Many articles have data that might interest your child (e.g., sports statistics, data on teenage smoking, facts about natural disasters). Share them and talk about what the numbers mean.

Share Strategies Have your child share their strategies for problem solving, mental computation, and estimation. Share your strategies with them.

Look for Software If your child has access to a computer, look for software that reinforces and teaches mathematical concepts.

ATTACHMENT F Middle School Grade Games

Factor Top It

Materials: number cards 0-9 (4 of each) (a " 10 " can represent a " 0 ")
Players: 2-4
Skill: Finding factors of a number
Object of the game: To score the most points in 5 rounds.

1. Shuffle the deck and place it number side down on the table.
2. In each round, players take turns. When it is your turn:

- Draw 2 cards from the top of the deck.
- Use the cards to make a 2-digit number.
- Record the number and all of its factors on a piece of paper.
- Find the sum of all the factors. This is your score for the round.

3. Play 5 rounds.
4. The winner is the player with the most points at the end of 5 rounds.

Example:

Player 1: \quad Cards 5 and 9 are used to form the number 95.
Factors: 1, 5, 19, 95
Score: $1+5+19+95=120$

Player 2: \quad Cards 2 and 5 are used to form the number 52.
Factors: 1, 2, 4, 8, 11, 22, 44, 88
Score: $1+2+4+8+11+22+44+88=180$
Player 2 scored the most points for this round.

Fraction/Whole Number Top It

Materials: number cards 1-10 (4 of each)
Players: 2-4
Skill: Multiplication of whole numbers and fractions
Object of the game: To collect the most cards.

1. Shuffle the cards and place them number side down on the table.
2. Each player turns over 3 cards. The card numbers are used to form 1 whole number and 1 fraction.

- The first card drawn is placed number-side up on the table. This card number is the whole number.
- The second and third cards drawn are used to form a fraction and are placed number-side up next to the first card. The fraction that these cards form must be less than or equal to 1.

3. Each player calculates the product of their whole number and fraction and calls it out as a mixed number. The player with the largest product takes all the cards. Players may use a calculator to compare their products.
4. In case of a tie for the largest product, each tied player repeats steps 2 and 3 . The player with the largest product takes all the cards from both plays.
5. The game ends when there are not enough cards left for each player to have another turn. The player with the most cards wins.

Example:

Amy turns over a 3 , a 9 , and a 5 , in that order.
Roger turns over a 7 , a 2 , and an 8 , in that order.
Amy's product is $3 * \frac{5}{9}=\frac{15}{9}=\frac{5}{3}=1 \frac{2}{3}$
Roger's product is $7 * \frac{2}{8}=\frac{14}{8}=\frac{7}{4}=1 \frac{3}{4}$
Roger's product is larger, so he takes all of the cards.
Advanced Version: Each player turns over 4 cards and forms 1 fraction from their first 2 cards and a second fraction from their last 2 cards. (All fraction must be less than or equal to 1).

Multiplication Top It

Materials: deck of cards (numbers 1-10)
Players: 2-4
Skill: multiplication and division facts

1. The rules are the same as for Addition Top It, except that players find the product of the numbers instead of the sum.
2. The player with the largest product takes all the cards. Answers can be checked with a multiplication table or calculator.

Variation: Uses only the number cards 1-9. Each player turns over 3 cards, forms a 2-digit number, then multiplies the 2-digit number by the remaining number.

Division Top It

1. Use only the number cards 1-9. Each player turns over 3 cards and uses them to generate a division problem as follows:

- Choose 2 cards to form the dividend.
- Use the remaining card as the divisor.
- Divide and drop any remainder.

2. The player with the largest quotient takes all the cards.

Advanced Version: Use only the number cards 1-9. Each player turns over 4 cards, chooses 3 of them to form a 3-digit number, then divides the 3-digit number by the remaining number. Players should carefully consider how they form their 3-digit numbers. For example, 462/5 is greater than 256/4.

ATTACHMENT G Everyday Math Online Access Directions

Dear Families,
We are excited to announce that your family is now able to access the Everyday Math online tools from any computer that has an Internet connection. We hope that you will find both the Online Games and the Interactive Student Reference Book useful for supporting your child at home. (Note: You will need to download "Shockwave" onto your computer in order to play the games. This is a free program.)

Here is how it works:

1) Open Internet Explorer or another web browser and go to http://em-ccss.everydaymathonline.com
2) Enter your student's username and press "LOG IN".

3) Then the password window will show up. Enter the 3 digit password from your student's card. Then click "LOG IN".
4) Then you can choose between using the Online Games or the Interactive Student Reference Book.

Online Games

When you choose the online games, your child can select a grade range and then pick a game from the menu. The games allow students a fun way to practice what they are learning at school.

Interactive Student Reference Book

When you choose the reference book, you can look up math terms in the glossary, search for a topic in the table of contents, or see examples of problems being solved. When you see the open book icon on a math homework assignment, go to the suggested page number in the online reference book to find further explanation and examples.

We hope you find these tools useful in supporting your student at home. Have fun doing math together!
login: student919 password: 354

Estimadas Familias,

Estamos entusiasmados en anunciar que su familia ya tiene acceso a las herramientas enlínea de Matemáticas Diarias en cualquier computadora que tenga conexión de Internet. Esperamos que los Juegos Enlínea y el Libro de Referencia Estudiantil le sean de utilidad en ayudar a su niño/a en
casa.

Así funciona:

1) Abra "Internet Explorer" o cualquier otro buscador y vaya a http://em-ccss.everydaymathonline.com
2) Entre el nombre de usuario de su estudiante y presione "LOG IN".

3) La ventana para el código de paso aparecerá. Entre el ccódigo de 3 dígitos que aparece en la tarjeta de su estudiante. Luego haga clic en "LOG IN"..
4) Ahí puede escoger usar los Juegos Enlínea o el Libro de Referencia Estudiantil.

Juegos Enlínea

Al escoger los juegos su niño/a debe seleccionar el rango de grados que sea más apropiado y escoger del menú de juegos. Los juegos serán una manera muy divertida de practicar lo que han estado estudiando en la escuela.

Libro Interactivo de Referencia Estudiantil (También en Español)

En el libro de referencia puede buscar términos matemáticos en el glosario, buscar tópicos en la tabla de contenido o ver ejemplos de cómo solucionar problemas. Cuando vea el dibujo del libro abierto en la tarea, puede ir a la página indicada en el libro de referencia para ver más ejemplos y explicaciones. Para español presione el botón en la esquina superior derecha.

Esperamos que esto le sea útil. Diviértanse juntos con matemáticas!

Sinceramente,

